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Chapter 1 

 

Evolution of Microcomputer 

 

Introduction 

A microprocessor is a programmable electronics chip that has computing and decision making 

capabilities similar to central processing unit of a computer. Any microprocessor based systems having 

limited number of resources are called microcomputers. Nowadays, microprocessor can be seen in 

almost all types of electronics devices like mobile phones, printers, washing machines etc. 

Microprocessors are also used in advanced applications like radars, satellites and flights. Due to the rapid 

advancements in electronic industry and large scale integration of devices results in a significant cost 

reduction and increase application of microprocessors and their derivatives. 

 

 
Microprocessor-based system 

 

 Bit: A bit is a single binary digit. 

 Word: A word refers to the basic data size or bit size that can be processed by the arithmetic and 

logic unit of the processor. A 16-bit binary number is called a word in a 16-bit processor. 

 Bus: A bus is a group of wires/lines that carry similar information. 

 System Bus: The system bus is a group of wires/lines used for communication between the 

microprocessor and peripherals. 

 Memory Word: The number of bits that can be stored in a register or memory element is called a 

memory word. 

 Address Bus: It carries the address, which is a unique binary pattern used to identify a memory 

location or an I/O port. For example, an eight bit address bus has eight lines and thus it can 

address 28 = 256 different locations. The locations in hexadecimal format can be written as 00H – 

FFH. 

 Data Bus: The data bus is used to transfer data between memory and processor or between I/O 

device and processor. For example, an 8-bit processor will generally have an 8-bit data bus and a 

16-bit processor will have 16-bit data bus. 

 Control Bus: The control bus carry control signals, which consists of signals for selection of 

memory or I/O device from the given address, direction of data transfer and synchronization of 

data transfer in case of slow devices. 
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A typical microprocessor consists of arithmetic and logic unit (ALU) in association with control unit to 

process the instruction execution. Almost all the microprocessors are based on the principle of 

store-program concept. In store-program concept, programs or instructions are sequentially stored in the 

memory locations that are to be executed. To do any task using a microprocessor, it is to be programmed 

by the user. So the programmer must have idea about its internal resources, features and supported 

instructions. Each microprocessor has a set of instructions, a list which is provided by the microprocessor 

manufacturer. The instruction set of a microprocessor is provided in two forms: binary machine code and 

mnemonics.  

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions in the 

form of binary patterns is called a machine language and it is difficult for us to understand. Therefore, the 

binary patterns are given abbreviated names, called mnemonics, which forms the assembly language. 

The conversion of assembly-level language into binary machine-level language is done by using an 

application called assembler. 

  

Technology Used:  

The semiconductor manufacturing technologies used for chips are:  

 Transistor-Transistor Logic (TTL) 

 Emitter Coupled Logic (ECL) 

 Complementary Metal-Oxide Semiconductor (CMOS)  

 

Classification of Microprocessors:  

Based on their specification, application and architecture microprocessors are classified.    

Based on size of data bus:  

 4-bit microprocessor 

 8-bit microprocessor 

 16-bit microprocessor 

 32-bit microprocessor  

 

Based on application:  

 General-purpose microprocessor- used in general computer system and can be used by 

programmer for any application. Examples, 8085 to Intel Pentium. 

 Microcontroller- microprocessor with built-in memory and ports and can be programmed for any 

generic control application. Example, 8051. 

 Special-purpose processors- designed to handle special functions required for an application. 

Examples, digital signal processors and application-specific integrated circuit (ASIC) chips.   

 

Based on architecture:  

 Reduced Instruction Set Computer (RISC) processors 

 Complex Instruction Set Computer (CISC) processors   

 

 

The concept and architecture of a microcomputer 

A microcomputer is a computer built on the basis of a microprocessor i.e. a processor implemented as 

an integrated circuit. Since all processors are now produced in the form of integrated circuits, we can 
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say that all computers are microcomputers. The general method for constructing microcomputers 

consists in connecting to the microprocessor busses additional sub-systems such as memories and 

peripheral device controllers (input/output units). 

The basic block diagram of a simple microcomputer is shown in the figure below. We can see there a 

microprocessor with three its busses going out: data bus, address bus and control bus. To these busses, 

the following devices are connected: operational memory composed of RAM (Random Access 

Memory)and ROM (Read Only Memory) memories, as well as input/output units to which peripheral 

devices are connected. 

 

 
 Simple microcomputer 

 

A more developed block diagram of a microcomputer is shown in the figure below. Besides RAM and 

ROM memories, more input/output units are connected to the microprocessor. 

These input/output units include: 

 parallel input/output controller in short - parallel I/O, parallel interface 

 serial input/output controller in short - serial I/O, serial interface 

 interrupt controller (handler) 

 timer/counter controller 

 Direct Memory Access (DMA) controller 
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 General scheme of simple microcomputer 

 

Parallel input/output controller maintains information exchange with peripheral devices, which send 

data in the parallel form. Examples of such devices are printers, display monitor, hard and floppy disk 

memories, keyboard. The activity of the controller is supervised by the microprocessor, which 

intervenes on each transfer of data by execution of respective instructions of data read or write from (to) 

the controller. The controller itself transfers data from its internal memory (registers) to peripheral 

devices. 

 

The serial input/output controller maintains information exchange with peripheral devices, which 

send data in the serial form. Examples of such devices are a mouse and a modem for interconnections 

through telephone network. The controller implements in hardware conversion of serial data into their 

parallel form and vice versa (with the use of serial/parallel registers). The functioning of the controller 

is controlled by the microprocessor, which intervenes on each termination of data conversion by 

execution of respective data read or writes instructions. 

Interrupt controller provides servicing interrupts coming in parallel from many external devices. Its 

task consists in receiving interrupt requests, registering them, performing selection to choose one 

which is to be serviced by the processor. The controller communicates with the processor to enable 

sending the identifier of the selected interrupt and to exchange control signals. The interrupt controller 

is supervised by the processor, which services the interrupt after receiving the interrupt from the 

controller. 

 

The DMA controller enables parallel data exchange between external devices and the operational 

memory without involvement of the processor. This controller enables autonomous data transfers 

to/from operational memory. These transfers do not engage the processor, which can proceed with 

computations at the same time. 
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The Microprocessor's Impact on Society 

Today, we literally swim in a sea of silicon. There are dozens of chips in every car and dozens in every 

office. Microprocessors in the form of watches, pagers, cellular phones, and Sharp Wizard's adorn our 

bodies as jewelry. Beyond embedded systems, the rapid rise of the Internet now appears to be on the 

verge of ensuring that the personal computer truly becomes ubiquitous. Where in the past PCs have been 

concentrated in the workplace and scattered in the homes of the wealthier third of American society, the 

Internet is almost certain to lower the final obstacles and make it possible to create a new class of 

information appliances that will extend the reach of the Net until it matches that of television or the 

telephone. Microprocessors are everywhere, but how is modern life different? In many areas the advent 

of microelectronics obviously does have clear benefits. That can be seen in the effect of computing 

technology on the disabled; the transformation of certain kinds of boring and dangerous manual labor; 

advances in medical technology and weather forecasting. Indeed the easy answer is that microprocessors 

have transformed modern society. They affect the way we work and play, the way we travel and 

communicate. They offer remarkable processing power at infinitesimal cost. 
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Chapter 2 

 

Architecture of Microprocessor 

A bus is a collection of wires, chips and slots inside the computer through which data are transmitted 

from one part of the computer to another from peripheral devices. It is also called a pathway in the 

computer on which data travels. It is a set of parallel distinct wires, serving different purposes, which 

allow devices attached to it to communicate with the CPU. 

 

The bus architecture in computer system is as shown below: 

 

 
 Bus architecture 

 

The functions of BUS are: 

 It carries information from one component to another. 

 It carries data, address or control signal. 

 One component of the computer can interact with other through a bus. 

 There are three main part of bus.  

 

They are described below: 

Control Bus: 

It carries the control signal. The control signal is used for controlling and coordinating the various 

activities of the computer. It is generated from the control unit of the CPU. Different architectures result 

in a different number of lines within the control bus, as each line is used to perform a specific task. 

For instance, different specific lines are used for each of read, write and reset requests. These are not a 

group of lines like address bus and data bus, but individual lines that provide a pulse to indicate a 

microprocessor operation. The control unit generates a specific control signal for every operation, such 

as memory read or input/output operation. This signal is also used to identify a device type, with which 

the microprocessor intends to communicate. 
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 Control bus 

 

Address Bus: 

Address bus carries memory address within the device. It allows the CPU to reference memory locations 

within the device. It connects the CPU and other peripherals and carries only memory address. In a 

computer system, each peripheral or memory location is identified by a numerical value, called an 

address and the address bus is used to carry this numerical value as well as it also contains a few control 

lines to carry control commands. The address bus is unidirectional, bits flow in one direction from the 

processor to peripherals. 

The processor uses the address bus to perform the first function of identifying a peripheral or a memory 

location. The address bus contains the connections between the processor and memory that carry the 

signals relating to the address which the CPU is processing at that time, such as the locations that the 

CPU is reading from or writing to. The processor uses the address bus to perform, identifying a 

peripheral or a memory location. 

When the address bus carries 8 bit at a time, the CPU could address only 256 (i.e. 28) bytes of RAM. 

Most of the early PCs had 20 bit address buses. So, CPU could address 220bytes of data. Now, with 

32-bit address buses, CPU can address 4GB of RAM. If there is wider bus path, more information can be 

processed at a time and hence, it also affects the processing speed of a computer. 

 

 
 Address bus 

 

Data Bus: 

Data bus transfer data from one location to another across the computer. On these lines, the meaningful 

data which is to be retrieved from a device is placed. Data bus is used by CPU to transfer data. It may be 

16-bit or 32-bit data bus. It is an electrical path that connects the CPU, memory and other hardware 

devices on the motherboard. These lines are bidirectional in which the data flows in both directions 

between the processor and memory and peripheral devices. The number of wires in the bus affects the 

speed at which data can be travel between hardware components just as the number of lanes on a 

highway affects the time it takes people to reach their destination. Each wire can transfer 1 bit of data at 

a time and 8 wire bus can move 8 bit at a time, which is 1-byte data at a time. A 16-bit bus can transfer 2 



9  

bytes. 32 bits can transfer 4 bytes and so on. Intel 80286 microprocessor used16 bit data bus and Intel 

80386 used 32-bit data bus. When the data bus width grows larger, more data can be transferred. 

 

The transmission of the data on bus lines takes place between approximately 1M baud for the 

microcomputer to about 1000 M baud or more for the large more expensive computers (1 baud = 1 

bit/sec). Communication between the different units of a processing system is carried out along address 

and data bus and also along various control lines. All control operations are governed by the master 

timing source and clock. 

 

 
 data bus 

 

Bus organization of 8085 

The microprocessor MPU performs various operations with peripheral devices or a memory location 

by using three sets of communication lines called buses: the address bus, the data bus and the control 

bus. And these three combined lines is called as system bus. 

 

 
Bus structure 

 

 

Address bus: 

The address bus is a group of 16 lines generally called as A0 – A15 to carry a 16-bit address of 

memory location. In a computer system, each peripheral or memory location is identified by a binary 

number called an address. This is similar to the postal address of a house. The address bus is 

unidirectional, that means bit flow in only one direction from MPU to peripheral. 

MPU carries 16-bit address i.e. 216 = 65,536 or 64K memory locations. 

 

Data Bus: 

https://1.bp.blogspot.com/-2JfyqGZbyKM/VuAKQuJxpxI/AAAAAAAABwQ/Idljym8Cwvk/s1600/8085+bus+structure.png
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The data bus is a group of eight bidirectional lines used for data flow in both the directions between 

MPH and peripheral devices. 

The 8 data lines are manipulating 8-bit data ranging from 00 to FF i.e. (28 = 256) numbers from 0000 

0000 -1111 1111 

This 8 bit data is called as word length and the register size of a microprocessor and MPH is called 

8–bit microprocessor. 

 

Control bus: 

Control bus is having various single lines used for sending control signals in the form of pulse to the 

memory and I/O devices. 

The MPU generates specific control signals to perform a particular operations. Some of these control 

signals are memory read, memory write, I/O read and I/O write. 

 

 
 Pin diagram of 8085 

 

The 8085 and Its Buses 

 The 8085 is an 8-bit general purpose microprocessor that can address 64K Byte of memory. 

 It has 40 pins and uses +5V for power. It can run at a maximum frequency of 3 MHz. 

 The pins on the chip can be grouped into 6 groups: 

 Address Bus. 

 Data Bus. 

 Control and Status Signals. 

 Power supply and frequency. 

 Externally Initiated Signals. 

 Serial I/O ports. 

 

8085 Pin description  

 Higher Order Address pins- A15 – A8 

o The address bus has 8 signal lines A8 – A15 which are unidirectional. 

 Lower Order Address/ Data Pins- AD7-AD0 
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o These are time multiplexed pins and are DE-multiplexed using the pin ALE 

o So, the bits AD0 – AD7 are bi-directional and serve as A0 – A7 and D0 – D7 at the 

same time. 

o During the execution of the instruction, these lines carry the address bits during the 

early part, then during the late parts of the execution, they carry the 8 data bits. 

o In order to separate the address from the data, we can use a latch to save the value 

before the function of the bits changes. 

 Control Pins – RD, WR 

o These are active low Read & Write pins 

 Status Pins – ALE, IO/M (active low), S1, S0 

o ALE (Address Latch Enable)-Used to DE-multiplex AD7-AD0 

o IO/M – Used to select I/O or Memory operation 

o S1,S0 – Denote the status of data on data bus 

 Interrupt Pins – TRAP, RST7.5, RST 6.5, RST 5.5, INTR, INTA 

o These are hardware interrupts used to initiate an interrupt service routine stored at 

predefined locations of the system memory. 

 Serial I/O pins – SID (Serial Input Data), SOD (Serial Output Data) 

o These pins are used to interface 8085 with a serial device. 

 Clock Pins- X1, X2, CLK(OUT) 

o X1, X2– These are clock input pins. A crystal is connected between these pins such that 

fcrystal= 2f8085 where fcrystal= crystal frequency & f8085 = operating frequency of 8085 

o CLK(OUT) – This is an auxiliary clock output source 

 Reset Pins – Reset In (active low), Reset Out 

o Reset In is used to reset 8085 whereas Reset Out can be used to reset other devices in 

the system 

 DMA (Direct Memory Access) pins – HOLD, HLDA 

o These pins are used when data transfer is to be performed directly between an external 

device and the main memory of the system. 

 Power Supply Pins – +VCC, VSS 
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Architecture of 8085 

 

 
Function block diagram of 8085 

 

This is the functional Block Diagram of 8085 Microprocessor. 

 

Accumulator:-It is a 8-bit register which is used to perform arithmetical and logical operation. It stores 

the output of any operation. It also works as registers for i/o accesses. 

 

Temporary Register:-It is a 8-bit register which is used to hold the data on which the accumulator is 

computing operation. It is also called as operand register because it provides operands to ALU. 

 

Registers:-These are general purposes registers. Microprocessor consists 6 general purpose registers of 

8-bit each named as B, C, D, E, H and L. Generally theses registers are not used for storing the data 

permanently. It carries the 8-bits data. These are used only during the execution of the instructions. 

These registers can also be used to carry the 16 bits data by making the pair of 2 registers. The valid 

register pairs available are BC, DE HL. We cannot use other pairs except BC, DE and HL. These 

registers are programmed by user. 
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Programmatic model of 8085 

 

ALU:-ALU performs the arithmetic operations and logical operation. 

Flag Registers:-It consists of 5 flip flop which changes its status according to the result stored in an 

accumulator. It is also known as status registers. It is connected to the ALU. 

There are five flip-flops in the flag register are as follows: 

1. Sign(S) 

2. zero(z) 

3. Auxiliary carry(AC) 

4. Parity(P) 

5. Carry(C) 

 

The bit position of the flip flop in flag register is: 

                          

 

 

All of the three flip-flop set and reset according to the stored result in the accumulator. 

1. Sign- If D7 of the result is 1 then sign flag is set otherwise reset. As we know that a number on 

the D7 always decides the sign of the number. 

If D7 is 1: the number is negative. 

If D7 is 0: the number is positive. 

2. Zeros (Z)-If the result stored in an accumulator is zero then this flip flop is set otherwise it is 

reset. 

3. Auxiliary carry(AC)-If any carry goes from D3 to D4 in the output then it is set otherwise it is 

reset 

4. Parity (P)-If the no of 1's is even in the output stored in the accumulator then it is set otherwise 

it is reset for the odd 

5. Carry(C)-If the result stored in an accumulator generates a carry in its final output then it is set 

otherwise it is reset. 

 

http://www.8085projects.info/images/Flags-Pic4.PNG
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Instruction registers (IR):- It is a 8-bit register. When an instruction is fetched from memory 

then it is stored in this register. 

 

Instruction Decoder: - Instruction decoder identifies the instructions. It takes the information 

from instruction register and decodes the instruction to be performed. 

 

Program Counter:- It is a 16 bit register used as memory pointer. It stores the memory address 

of the next instruction to be executed. So we can say that this register is used to sequencing the 

program. Generally the memory have 16 bit addresses so that it has 16 bit memory. 

The program counter is set to 0000H. 

 

Stack Pointer: - It is also a 16 bit register used as memory pointer. It points to the memory 

location called stack. Generally stack is a reserved portion of memory where information can be 

stores or taken back together. 

 

Timing and Control Unit: - It provides timing and control signal to the microprocessor to 

perform the various operations. It has three control signals. It controls all external and internal 

circuits. It operates with reference to clock signals. It synchronizes all the data transfers. 

There are three control signal: 

1. ALE-Arithmetic Latch Enable, It provides control signal to synchronize the components of 

microprocessor. 

2. RD- This is active low used for reading operation. 

3. WR-This is active low used for writing operation. 

 

There are three status signal used in microprocessor S0, S1 and IO/M. It changes its status 

according the provided input to these pins. 

 

                  

 

Serial Input Output Control-There are two pins in this unit. This unit is used for serial data 

communication. 

 

Interrupt Unit-There are 6 interrupt pins in this unit. Generally an external hardware is 

connected to these pins. These pins provide interrupt signal sent by external hardware to 

microprocessor and microprocessor sends acknowledgement for receiving the interrupt signal. 

Generally INTA is used for acknowledgement.  
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Register Section:-Many registers has been used in microprocessor.  

It consists of PIPO (Parallel Input Parallel Output) register. 

 

What is an Opcode? 

Opcode is nothing but the machine language instruction which denotes the microprocessor about what 

operation should be performed on the specific data. Microprocessor converts the instruction into suitable 

machine language, so that it can understand the operation to be performed and executes it. 

Consider MVI A, 18H. 

When the above instruction is to be executed, the microprocessor gets the Opcode for MVI A and 

performs the necessary operation on the data which is 18H in this case. The Opcode for MVI A is 3EH. 

So the microprocessor first reads this Opcode from the instruction and then performs the operation 

specified by Opcode over the data given. 

Now let us assume we want to store the above instruction in a specific address say 5500H. We know that 

in 8085 processor only one byte can be stored in each address location. Therefore the Opcode 3EH is 

stored at the location 5500H and the data 18H is stored at the next location 5501H. 

 

 
 Schematic diagram of control signal generation 

 

READ Operation: 

 During T1 state, microprocessor uses IO/M(bar), S0, S1 signals are used to instruct 

microprocessor to fetch opcode. 

 Thus when IO/M(bar)=0, S0=S1= 1, it indicates opcode fetch operation. 

 During this operation 8085 transmits 16-bit address and also uses ALE signal for address 

latching. 

 At T2 state microprocessor uses read signal and make data ready from that memory location to 

read opcode from memory and at the same time program counter increments by 1 and points next 

instruction to be fetched. 

 In this state microprocessor also checks READY input signal, if this pin is at low logic level ie. '0' 

then microprocessor adds wait state immediately between T2 and T3. 
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 At T3, microprocessor reads opcode and stores it into instruction register to decode it further. 

 During T4 microprocessor performs internal operation like decoding opcode and providing 

necessary actions. 

 The opcode is decoded to know whether T5 or T6 states are required, if they are not required then 

碌 p performs next operation. 

 

WRITE Operation: 

 It is used to fetch one byte from the memory. 

 It requires 3 T-States. 

 It can be used to fetch operand or data from the memory. 

 During T1, A8-A15 contains higher byte of address. At the same time ALE is high. Therefore 

Lower byte of address A0-A7 is selected from AD0-AD7. 

 Since it is memory ready operation, IO/M(bar) goes low. 

 During T2 ALE goes low, RD(bar) goes low. Address is removed from AD0-AD7 and data 

D0-D7 appears on AD0-AD7. 

 During T3, Data remains on AD0-AD7 till RD(bar) is at low signal. 

 

Steps to execute a stored program 

 

Two steps are performed that are fetch operation and execution operation. 

Fetch operation: -  

1. microprocessor will transfer 16 bit address from PC to address line to select desired location 

2. Microprocessor gives reading location so 8 bit instruction is transferred from selected memory 

location to data pin 

3. instruction code is transferred by mi9croprocessor to instruction register from data bus  

Execution operation:-  

1. Instruction code is transferred from IR to instruction decoder 

2. The instruction code as of 2 or 3 bytes when 1st ckt. Will read 2nd and 3rd byte of instruction from 

memory and then execute corresponding instruction. 

  



17  

Chapter 3 

 

Instruction Timing and Cycle 

An instruction cycle (also known as the fetch–decode–execute cycle or the fetch-execute cycle) is the 

basic operational process of a computer. It is the process by which a computer retrieves 

a program instruction from its memory, determines what actions the instruction dictates, and carries out 

those actions. This cycle is repeated continuously by a computer's central processing unit (CPU), 

from boot-up to when the computer is shut down. 

In simpler CPU's the instruction cycle is executed sequentially, each instruction being processed before 

the next one is started. In most modern CPU's the instruction cycles are instead executed concurrently, 

and often in parallel, through an instruction pipeline: the next instruction starts being processed before 

the previous instruction has finished, which is possible because the cycle is broken up into separate steps. 

 

1. Initiating the cycle 

 The cycle starts immediately when power is applied to the system using an initial PC value that 

is predefined for the system architecture 

 Typically this address points to instructions in a read-only memory (ROM) (not the random 

access memory or RAM) which begins the process of loading the operating system. 

 

2. Fetch the Instruction 

Step 1 of the Instruction Cycle is called the Fetch Cycle. This step is the same for each instruction. 

i. The CPU sends PC to the MAR and sends a READ command on the control bus 

ii. In response to the read command (with address equal to PC), the memory returns the data 

stored at the memory location indicated by PC on the data bus. 

iii. The CPU copies the data from the data bus into its MDR (also known as MBR) 

iv. A fraction of a second later, the CPU copies the data from the MDR to the Instruction Register 

(IR) 

v. The PC is incremented so that it points to the following instruction in memory. This step 

prepares the CPU for the next cycle. The Control Unit fetches the instruction's address from 

the Memory Unit 

 

3. Decode the Instruction 

 Step 2 of the instruction Cycle is called the Decode Cycle. The decoding process allows the 

CPU to determine what instruction is to be performed, so that the CPU can tell how many 

operands it needs to fetch in order to perform the instruction. 

 The opcode fetched from the memory is decoded for the next steps and moved to the 

appropriate registers. The decoding is done by the CPU's Control Unit. 

 

 

4. Read the effective address 

 Step 3 is deciding which operation it is. If this is a Memory operation - in this step the computer 

checks if it's a direct or indirect memory operation: 

 Direct memory instruction - Nothing is being done. 

 Indirect memory instruction - The effective address is being read from the memory. If this is a 

I/O or Register instruction - the computer checks its kind and executes the instruction. 

https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Instruction_pipeline
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5. Execute the Instruction 

 Step 4 of the Instruction Cycle is the Execute Cycle. Here, the function of the instruction is 

performed. 

 If the instruction involves arithmetic or logic, the Arithmetic Logic Unit is utilized. This is the 

only stage of the instruction cycle that is useful from the perspective of the end user. 

 Everything else is overhead required to make the execute stage happen. 

 

 

Machine cycle 

A machine cycle, also called a processor cycle or a instruction cycle, is the basic operation performed 

by a central processing unit (CPU). A CPU is the main logic unit of a computer. 

A machine cycle consists of a sequence of three steps that is performed continuously and at a rate of 

millions per second while a computer is in operation. They are fetch, decode and execute. There also is 

a fourth step, store, in which input and output from the other three phases is stored in memory for later 

use; however, no actual processing is performed during this step. 

In the fetch step, the control unit requests that main memory provide it with the instruction that is 

stored at the address (i.e., location in memory) indicated by the control unit's program counter. 

The control unit is a part of the CPU that also decodes the instruction in the instruction register. 

A register is a very small amount of very fast memory that is built into the CPU in order to speed up its 

operations by providing quick access to commonly used values; instruction registers are registers that 

hold the instruction being executed by the CPU. Decoding the instructions in the instruction register 

involves breaking the operand field into its components based on the instructions opcode. 

Opcode (an abbreviation of operation code) is the portion of a machine language instruction that 

specifies what operation is to be performed by the CPU. Machine language, also called machine code, 

refers to instructions coded in patterns of bits (i.e., zeros and ones) that are directly readable and 

executable by a CPU. 

A program counter, also called the instruction pointer in some computers, is a register that indicates 

where the computer is in its instruction sequence. It holds either the address of the instruction currently 

being executed or the address of the next instruction to be executed, depending on the details of the 

particular computer. The program counter is automatically incremented for each machine cycle so that 

instructions are normally retrieved sequentially from memory. 

The control unit places these instructions into its instruction register and then increments the program 

counter so that it contains the address of the next instruction stored in memory. It then executes the 

instruction by activating the appropriate circuitry to perform the requested task. As soon as the 

instruction has been executed, it restarts the machine cycle, beginning with the fetch step. 

 

T states 

One complete cycle of clock is called as T-state as shown in the above figure. A T-state is measured from 

the falling edge of one clock pulse to the falling edge of the next clock pulse. Various versions of 8086 

have maximum clock frequency from 5MHz to 10MHz. Hence the minimum time for one T-state is 

between 100 to 200 nsec. 

 

 

 

http://www.linfo.org/cpu.html
http://www.linfo.org/computer.html
http://www.linfo.org/memory.html
http://www.linfo.org/memory.html
http://www.linfo.org/register.html
http://www.linfo.org/opcode.html
http://www.linfo.org/machine_code.html
http://www.linfo.org/bit.html
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Instruction Execution And Timing Diagram:  

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and operand. The 

opcode is a command such as ADD and the operand is an object to be operated on, such as a byte or the 

content of a register.  

Instruction Cycle: The time taken by the processor to complete the execution of an instruction. An 

instruction cycle consists of one to six machine cycles.  

Machine Cycle: The time required to complete one operation; accessing either the memory or I/O 

device. A machine cycle consists of three to six T-states.  

 T-State: Time corresponding to one clock period. It is the basic unit to calculate execution of 

instructions or programs in a processor.  

To execute a program, 8085 performs various operations as:  

 Opcode fetch 

 Operand fetch 

 Memory read/write 

 I/O read/write  

External communication functions are:   

 Memory read/write 

 I/O read/write 

 Interrupt request acknowledge 

    

Opcode Fetch Machine Cycle:  

It is the first step in the execution of any instruction. The timing diagram of this cycle is given below 

The following points explain the various operations that take place and the signals that are changed 

during the execution of opcode fetch machine cycle:  

T1 clock cycle  

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit address and A8 – 

A15 contains higher bit address. 

ii. M IO/ signal is low indicating that a memory location is being accessed. S1 and S0 also changed to 

the levels as indicated in Table 1.  

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.  

T2 clock cycle  

i. Multiplexed address bus is now changed to data bus. 

ii. The RD signal is made low by the processor. This signal makes the memory device load the data bus 

with the contents of the location addressed by the processor.  
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T3 clock cycle  

i. The opcode available on the data bus is read by the processor and moved to the instruction 

register. ii. The RD signal is deactivated by making it logic 1.  

T4 clock cycle  

i. The processor decode the instruction in the instruction register and generate the necessary 

control signals to execute the instruction. Based on the instruction further operations such as 

fetching, writing into memory etc takes place. 

 

Timing diagram for opcode fetch cycle 

 

Memory Read Machine Cycle:  

The memory read cycle is executed by the processor to read a data byte from memory. The machine 

cycle is exactly same to opcode fetch except: a) It has three T-states b) The S0 signal is set to 0. The 

timing diagram of this cycle is given in Fig.  
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Timing diagram for memory read machine cycle 

Memory Write Machine Cycle:  

The memory write cycle is executed by the processor to write a data byte in a memory location. The 

processor takes three T-states and WR signal is made low. The timing diagram of this cycle is given 

below.  

I/O Read Cycle:  

The I/O read cycle is executed by the processor to read a data byte from I/O port or from peripheral, 

which is I/O mapped in the system. The 8-bit port address is placed both in the lower and higher order 

address bus. The processor takes three T-states to execute this machine cycle. The timing diagram of this 

cycle is given below 
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Timing diagram for memory write machine cycle 

 

 Timing diagram I/O read machine cycle 
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I/O Write Cycle:  

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a peripheral, which 

is I/O mapped in the system. The processor takes three T-states to execute this machine cycle. The timing 

diagram of this cycle is given in dia.  

 

 Timing diagram I/O write machine cycle 

Ex: Timing diagram for IN 80H.  
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Chapter – 4 

 

Programming (with respect to8085 microprocessor) 

 

Assembly languages 

An assembly (or assembler) language, often abbreviated asm, is a low-level programming language for 

a computer, or other programmable device, in which there is a very strong (but often not one-to-one) 

correspondence between the language and the architecture's machine code instructions. Each assembly 

language is specific to a particular computer architecture. In contrast, most high-level programming 

languages are generally portable across multiple architectures but require interpreting or compiling. 

Assembly language may also be called symbolic machine code. 

 

Machine language 

Machine code or machine language is a set of instructions executed directly by a computer's central 

processing unit (CPU). Each instruction performs a very specific task, such as a load, a jump, or 

an ALU operation on a unit of data in a CPU register or memory. Every program directly executed by a 

CPU is made up of a series of such instructions. (The phrase 'directly executed' needs some clarification; 

machine code is by definition the lowest level of programming detail visible to the programmer, but 

internally many processors use microcode or optimize and transform machine code instructions into 

sequences of micro-ops in a sophisticated way.) 

 

Mnemonics 

Mnemonics allow users to access quickly a wide variety of commands, services, programs and functions 

without the need to type out extended phrases. One example of a mnemonic code is the term "inc," which 

on an Intel microprocessor refers to the command "increase by one." Rather than type the entire phrase, 

the letters "inc" can be entered. Mnemonic code derives from the concept of traditional mnemonics in 

which abbreviations, rhymes or simple stories are used to help people remember information. 

 

Instruction Set and Execution In 8085  

Based on the design of the ALU and decoding unit, the microprocessor manufacturer provides 

instruction set for every microprocessor. The instruction set consists of both machine code and 

mnemonics.  

 

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The 

entire group of instructions that a microprocessor supports is called instruction set. Microprocessor 

instructions can be classified based on the parameters such functionality, length and operand addressing.  

 

Classification based on functionality:  

I. Data transfer operations: This group of instructions copies data from source to destination. The 

content of the source is not altered. 

II. Arithmetic operations: Instructions of this group perform operations like addition, subtraction, 

increment & decrement. One of the data used in arithmetic operation is stored in accumulator and 

the result is also stored in accumulator. 

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The operations like AND, 

OR and EXOR uses two operands, one is stored in accumulator and other can be any register or 

https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Computer_architecture
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https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Jump_instruction
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
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https://en.wikipedia.org/wiki/Microcode
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memory location. The result is stored in accumulator. NOT operation requires single operand, 

which is stored in accumulator. 

IV. Branching operations: Instructions in this group can be used to transfer program sequence from 

one memory location to another either conditionally or unconditionally. V. Machine control 

operations: Instruction in this group control execution of other instructions and control operations 

like interrupt, halt etc.  

 

Classification based on length:  

I. One-byte instructions: Instruction having one byte in machine code. Examples are depicted in 

Table 2 

II. Two-byte instructions: Instruction having two byte in machine code. Examples are depicted in 

Table 3.  

III. Three-byte instructions: Instruction having three byte in machine code. Examples are depicted in 

Table 4. 

 

Table 2 Examples of one byte instructions 

Opcode Operand Machine code/Hex code 

MOV A, B 78 

ADD M 86 

 

Table 3 Examples of two byte instructions 

Opcode    Operand   Machine 

code/Hex code 

Byte description 

MVI A,  7FH  3E  First byte 

  7F Second byte 

ADI  0FH  C6  First byte 

  0F Second byte 

 

Table 4 Examples of three byte instructions 

Opcode Operand Machine code/Hex 

code 

Byte description 

JMP 9050H C3 First byte 

  50 Second byte 

  90 Third byte 

LDA 8850H 3A First byte 

  50 Second byte 

  88 Third byte 

 

Addressing Modes in Instructions:  

The process of specifying the data to be operated on by the instruction is called addressing. The various 

formats for specifying operands are called addressing modes.  

 

The 8085 has the following five types of addressing:  

I. Immediate addressing 
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II. Memory direct addressing 

III. Register direct addressing 

IV. Indirect addressing  

V. Implicit addressing  

 

Immediate Addressing:  

In this mode, the operand given in the instruction - a byte or word – transfers to the destination register or 

memory location.  

Ex: MVI A, 9AH  

 The operand is a part of the instruction. 

 The operand is stored in the register mentioned in the instruction.  

 

Memory Direct Addressing:  

Memory direct addressing moves a byte or word between a memory location and register. The memory 

location address is given in the instruction.  

Ex: LDA 850FH  

This instruction is used to load the content of memory address 850FH in the accumulator.   

 

Register Direct Addressing:  

Register direct addressing transfer a copy of a byte or word from source register to destination register.  

Ex: MOV B, C  

It copies the content of register C to register B.  

 

Indirect Addressing:  

Indirect addressing transfers a byte or word between a register and a memory location.  

Ex: MOV A, M  

Here the data is in the memory location pointed to by the contents of HL pair. The data is moved to the 

accumulator.  

 

Implicit Addressing  

In this addressing mode the data itself specifies the data to be operated upon.   

Ex: CMA  

The instruction complements the content of the accumulator. No specific data or operand is mentioned in 

the instruction.  
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INSTRUCTION SET OF 8085  

Data Transfer Instructions 

Opcode     Operand Description 

 
Copy from source to destination 

MOV Rd, Rs This instruction copies the contents of the source 
 M, Rs register into the destination register; the contents of 
 Rd, M the source register are not altered. If one of the operands is a 
  memory location, its location is specified by the contents of 
  the HL registers. 
  Example: MOV B, C or MOV B, M 

 
Move immediate 8-bit 
MVI Rd, data The 8-bit data is stored in the destination register or 

 M, data memory. If the operand is a memory location, its location is 
  specified by the contents of the HL registers. 
  Example: MVI B, 57H or MVI M, 57H 

 
Load accumulator 

LDA 16-bit address The contents of a memory location, specified by a 
  16-bit address in the operand, are copied to the accumulator. 
  The contents of the source are not altered. 
  Example: LDA 2034H 

 
Load accumulator indirect 
LDAX B/D Reg. pair The contents of the designated register pair point to a memory 

  location. This instruction copies the contents of that memory 
  location  into the accumulator. The contents of either the 
  register pair or the memory location are not altered. 
  Example: LDAX B 

 

Load register pair immediate 

LXI Reg. pair, 16-bit data The instruction loads 16-bit data in the register pair 

designated in the operand. 

Example: LXI H, 2034H or LXI H, XYZ 

 

Load H and L registers direct 

LHLD       16-bit address The instruction copies the contents of the memory location 

pointed out by the 16-bit address into register L and copies the 

contents of the next memory location into register H. The 

contents of source memory locations are not altered. 

Example: LHLD 2040H 
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Store accumulator direct 
STA 16-bit address The contents of the accumulator are copied into the memory 

  location specified by the operand. This is a 3-byte instruction, 
  the second byte specifies the low-order address and the third 
  byte specifies the high-order address. 
  Example: STA 4350H 

 
Store accumulator indirect 
STAX Reg. pair The contents of the accumulator are copied into the memory 

  location specified by the contents of the operand (register 
  pair). The contents of the accumulator are not altered. 
  Example: STAX B 

 
Store H and L registers direct 
SHLD 16-bit address The contents of register L are stored into the memory location 

  specified by the 16-bit address in the operand and the contents 
  of H register are stored into the next memory location by 
  incrementing the operand. The contents of registers HL are 
  not altered. This is a 3-byte instruction, the second byte 
  specifies the low-order address and the third byte specifies the 
  high-order address. 
  Example: SHLD 2470H 

 
Exchange H and L with D and E 
XCHG None The contents of register H are exchanged with the contents of 

  register D, and the contents of register L are exchanged with 
  the contents of register E. 
  Example: XCHG 

 
Copy H and L registers to the stack pointer 

SPHL None The instruction loads the contents of the H and L registers into 
  the stack pointer register, the contents of the H register 
  provide the high-order address and the contents of the L 
  register provide the low-order address. The contents of the H 
  and L registers are not altered. 
  Example: SPHL 

 
Exchange H and L with top of stack 

XTHL None The contents of the L register are exchanged with the stack 
  location pointed out by the contents of the stack pointer 
  register. The contents of the H register are exchanged with 
  the next stack location (SP+1); however, the contents of the 
  stack pointer register are not altered. 
  Example: XTHL 
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Push register pair onto stack 
PUSH Reg. pair The contents of the register pair designated in the operand are 

  copied onto the stack in the following sequence. The stack 
  pointer register is decremented and the contents of the high- 
  order register (B, D, H, A) are copied into that location. The 
  stack pointer register is decremented again and the contents of 
  the low-order register (C, E, L, flags) are copied to that 
  location. 
  Example: PUSH B or PUSH A 

 
Pop off stack to register pair 
POP Reg. pair The contents of the memory location pointed out by the stack 

  pointer register are copied to the low-order register (C, E, L, 
  status flags) of the operand. The stack pointer is incremented 
  by 1 and the contents of that memory location are copied to 
  the high-order register (B, D, H, A) of the operand. The stack 
  pointer register is again incremented by 1. 
  Example: POP H or POP A 

 

Output data from accumulator to a port with 8-bit address 

OUT 8-bit port address The contents of the accumulator are copied into the I/O port 

specified by the operand. 

Example: OUT F8H 

 

Input data to accumulator from a port with 8-bit address 

IN 8-bit port address The contents of the input port designated in the operand are 

read and loaded into the accumulator. 

Example: IN 8CH 
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Arithmetic Instructions 

 

Opcode Operand Description 

Add register or memory to accumulator 

ADD R The contents of the operand (register or memory) are 
 M added to the contents of the accumulator and the result is 
  stored  in the  accumulator. If the operand is a memory 
  location, its location is specified by the contents of the HL 
  registers. All flags are modified to reflect the result of the 
  addition. 
  Example: ADD B or ADD M 

 
Add register to accumulator with carry 
ADC R The contents of the operand (register or memory) and 

 M the Carry flag are added to the contents of the accumulator 
  and the result is stored in the accumulator. If the operand is a 
  memory location, its location is specified by the contents of 
  the HL registers. All flags are modified to reflect the result of 
  the addition. 
  Example: ADC B or ADC M 

 
Add immediate to accumulator 

ADI 8-bit data The 8-bit data (operand) is added to the contents of the 
  accumulator and the result is stored in the accumulator. All 
  flags are modified to reflect the result of the addition. 
  Example: ADI 45H 

 
Add immediate to accumulator with carry 
ACI 8-bit data The 8-bit data (operand) and the Carry flag are added to the 

  contents of the accumulator and the result is stored in the 
  accumulator. All flags are modified to reflect the result of the 
  addition. 
  Example: ACI 45H 

 
Add register pair to H and L registers 
DAD Reg. pair The 16-bit contents of the specified register pair are added to 

  the contents of the HL register and the sum is stored in the 
  HL register. The contents of the source register pair are not 
  altered. If the result is larger than 16 bits, the CY flag is set. 
  No other flags are affected. 
  Example: DAD H 
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Subtract register or memory from accumulator 

SUB R The contents of the operand (register or memory ) are 
 M subtracted from the contents of the accumulator, and the result 
  is  stored  in the accumulator. If the operand is a memory 
  location, its location is specified by the contents of the HL 
  registers. All flags are modified to reflect the result of the 
  subtraction. 
  Example: SUB B or SUB M 

 
Subtract source and borrow from accumulator 
SBB R The contents of the operand (register or memory ) and 

 M the Borrow flag are subtracted from the contents of the 
  accumulator and the result is placed in the accumulator. If 
  the operand is a memory location, its location is specified by 
  the contents of the HL registers. All flags are modified to 
  reflect the result of the subtraction. 
  Example: SBB B or SBB M 

 
Subtract immediate from accumulator 
SUI 8-bit data The 8-bit data (operand) is subtracted from the contents of the 

  accumulator and the result is stored in the accumulator. All 
  flags are modified to reflect the result of the subtraction. 
  Example: SUI 45H 

 
 

Subtract immediate from accumulator with borrow 

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted 

from the contents of the accumulator and the result is stored  in 

the accumulator. All flags are modified to reflect the result 
of the subtracion. 

  Example: SBI 45H 

 
Increment register or memory by 1 
INR R The contents of the designated register or memory) are 

 M incremented by 1 and the result is stored in the same place. If 
  the operand is a memory location, its location is specified by 
  the contents of the HL registers. 
  Example: INR B or INR M 

 

Increment register pair by 1 

INX R The contents of the designated register pair are incremented by 

1 and the result is stored in the same place. 

Example:  INX H 
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Decrement register or memory by 1 

DCR         R The contents of the designated register or memory are 

M decremented by 1 and the result is stored in the same place. If 

the operand is a memory location, its location is specified by 

the contents of the HL registers. 

Example: DCR B or DCR M 

 

Decrement register pair by 1 

DCX         R The contents of the designated register pair are decremented by 

1 and the result is stored in the same place. 

Example: DCX H 

 

Decimal adjust accumulator 

DAA         none The contents of the accumulator are changed from a binary 

value to two 4-bit binary coded decimal (BCD) digits. This is 

the only instruction that uses the auxiliary flag to perform the 

binary to BCD conversion, and the conversion procedure is 

described below. S, Z, AC, P, CY flags are altered to reflect the 

results of the operation. 

 
If the value of the low-order 4-bits in the accumulator is greater 

than 9 or if AC flag is set, the instruction adds 6 to the 

low-order four bits. 

 

If the value of the high-order 4-bits in the accumulator is 

greater than 9 or if the Carry flag is set, the instruction adds 6 to 

the high-order four bits. 

 

Example: DAA 
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Branching Instructions 

Opcode Operand Description 

Jump unconditionally 

JMP 16-bit address The program sequence is transferred to the memory location 

specified by the 16-bit address given in the operand. 

Example: JMP 2034H or JMP XYZ 

 

Jump conditionally 

Operand: 16-bit address 

The program sequence is transferred to the memory location 

specified by the 16-bit address given in the operand based on 

the specified flag of the PSW as described below. 

Example: JZ 2034H or JZ XYZ 

 

Opcode Description Flag Status 

JC Jump on Carry CY = 1 

JNC Jump on no Carry CY = 0 

JP Jump on positive S = 0 

JM Jump on minus S = 1 

JZ Jump on zero Z = 1 

JNZ Jump on no zero Z = 0 

JPE Jump on parity even P = 1 
JPO Jump on parity odd P = 0 
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Unconditional subroutine call 

CALL       16-bit address The program sequence is transferred to the memory location 

specified by the 16-bit address given in the operand. Before the 

transfer, the address of the next instruction after CALL (the 

contents of the program counter) is pushed onto the stack. 

Example: CALL 2034H or CALL XYZ 

 

Call conditionally 

 

Operand: 16-bit address 

 

The program sequence is transferred to the memory location 

specified by the 16-bit address given in the operand based on 

the specified flag of the PSW as described below. Before the 

transfer, the address of the next instruction after the call (the 

contents of the program counter) is pushed onto the stack. 

Example: CZ 2034H or CZ XYZ 

 

Opcode Description Flag Status 

CC Call on Carry CY = 1 

CNC Call on no Carry CY = 0 

CP Call on positive S = 0 

CM Call on minus S = 1 

CZ Call on zero Z = 1 

CNZ Call on no zero Z = 0 

CPE Call on parity even P = 1 

CPO Call on parity odd P = 0 
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Return from subroutine unconditionally 

RET          none The program sequence is transferred from the subroutine to the 

calling program. The two bytes from the top of the stack are 

copied into the program counter, and program execution begins 

at the new address. 

Example: RET 

 

Return from subroutine conditionally 

Operand: none 

The program sequence is transferred from the subroutine to the 

calling program based on the specified flag of the PSW as 

described below. The two bytes from the top of the stack are 

copied into the program counter, and program execution 

begins at the new address. 

Example: RZ 

 

Opcode Description Flag Status 

RC Return on Carry CY = 1 

RNC Return on no Carry CY = 0 

RP Return on positive S = 0 

RM Return on minus S = 1 

RZ Return on zero Z = 1 

RNZ Return on no zero Z = 0 

RPE Return on parity even P = 1 

RPO Return on parity odd P = 0 
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Load program counter with HL contents 

PCHL       none The contents of registers H and L are copied into the program 

counter. The contents of H are placed as the high-order byte 

and the contents of L as the low-order byte. 

Example: PCHL 

 

Restart 

RST 0-7 The RST instruction is equivalent to a 1-byte call instruction to 

one of eight memory locations depending upon the number. 

The instructions are generally used in conjunction with 

interrupts and inserted using external hardware. However 

these can be used as software instructions in a program to 

transfer program execution to one of the eight locations. The 

addresses are: 

 
Instruction Restart Address 

RST 0 0000H 

RST 1 0008H 

RST 2 0010H 

RST 3 0018H 

RST 4 0020H 

RST 5 0028H 

RST 6 0030H 
RST 7 0038H 

 

The 8085 has four additional interrupts and these interrupts 

generate RST instructions internally and thus do not require 

any external hardware. These instructions and their Restart 

addresses are: 

 

Interrupt Restart Address 

TRAP  0024H 

RST 5.5 002CH 

RST 6.5 0034H 

RST 7.5 003CH 
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Logical Instructions 

Opcode Operand Description 

Compare register or memory with accumulator 

CMP      R The contents of the operand (register or memory) are 

M compared with the contents of the accumulator. Both 

contents are preserved . The result of the comparison is shown 

by setting the flags of the PSW as follows: 

if (A) < (reg/mem): carry flag is set if 

(A) = (reg/mem): zero flag is set 

if (A) > (reg/mem): carry and zero flags are reset 

Example: CMP B or CMP M 

 

Compare immediate with accumulator 

CPI 8-bit data The second byte (8-bit data) is compared with the contents of 

the accumulator. The values being compared remain 

unchanged. The result of the comparison is shown by setting 

the flags of the PSW as follows: 

if (A) < data: carry flag is set if 

(A) = data: zero flag is set 

if (A) > data: carry and zero flags are reset Example: 

CPI 89H 

 

Logical AND register or memory with accumulator 

ANA R The contents of the accumulator are logically ANDed with 
 M the contents of the operand (register or memory), and the 
  result  is  placed  in the accumulator. If the operand is a 
  memory location, its address is specified by the contents of 
  HL registers. S, Z, P are modified to reflect the result of the 
  operation. CY is reset. AC is set. 
  Example: ANA B or ANA M 

 
Logical AND immediate with accumulator 

ANI 8-bit data The contents of the accumulator are logically ANDed with the 
  8-bit data (operand) and the result is placed in the 
  accumulator. S, Z, P are modified to reflect the result of the 
  operation. CY is reset. AC is set. 
  Example: ANI 86H 
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Exclusive OR register or memory with accumulator 
XRA R The contents of the accumulator are Exclusive ORed with 

 M the contents of the operand (register or memory), and the 
  result  is  placed  in the accumulator. If the operand is a 
  memory location, its address is specified by the contents of 
  HL registers. S, Z, P are modified to reflect the result of the 
  operation. CY and AC are reset. 
  Example: XRA B or XRA M 

 
Exclusive OR immediate with accumulator 

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the 
  8-bit data (operand) and the result is placed in the 
  accumulator. S, Z, P are modified to reflect the result of the 
  operation. CY and AC are reset. 
  Example: XRI 86H 

 
Logical OR register or memory with accumulaotr 
ORA R The contents of the accumulator are logically ORed with 

 M the contents of the operand (register or memory), and the 
  result  is  placed  in the accumulator. If the operand is a 
  memory location, its address is specified by the contents of 
  HL registers. S, Z, P are modified to reflect the result of the 
  operation. CY and AC are reset. 
  Example: ORA B or ORA M 

 

 

Logical OR immediate with accumulator 

ORI 8-bit data The contents of the accumulator are logically ORed with the 

8-bit data (operand) and the result is placed in the accumulator. 

S, Z, P are modified to reflect the result of the operation. CY 

and AC are reset. 

Example: ORI 86H 

 
 

Rotate accumulator left 

RLC none Each binary bit of the accumulator is rotated left by one 

position. Bit D7 is placed in the position of D0 as well as in the 

Carry flag. CY is modified according to bit D7. S, Z, P, 

AC are not affected. 
  Example: RLC 

 
Rotate accumulator right 

RRC none Each binary bit of the accumulator is rotated right by one 

 position. Bit D0 is placed in the position of D7 as well as in 

the Carry flag. CY is modified according to bit D0. S, Z, P, 

AC are not affected. 

Example: RRC 
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Rotate accumulator left through carry 
RAL none Each binary bit of the accumulator is rotated left by one 

  position through the Carry flag. Bit D7 is placed in the Carry 
  flag, and the Carry flag is placed in the least significant 

  position D0. CY is modified according to bit D7. S, Z, P, AC 
  are not affected. 
  Example: RAL 

 
Rotate accumulator right through carry 
RAR none Each binary bit of the accumulator is rotated right by one 

  position through the Carry flag. Bit D0 is placed in the Carry 
  flag, and the Carry flag is placed in the most significant 

  position D7. CY is modified according to bit D0. S, Z, P, AC 
  are not affected. 
  Example: RAR 

 

Complement accumulator 

CMA none The contents of the accumulator are complemented. No flags 

are affected. 

Example: CMA 

 

Complement carry 

CMC none The Carry flag is complemented. No other flags are affected. 

Example: CMC 

 

Set Carry 

STC none The Carry flag is set to 1. No other flags are affected. 

Example: STC 
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Control Instructions 

Opcode     Operand Description 

No operation 

NOP         none No operation is performed. The instruction is fetched and 

decoded. However no operation is executed. 

Example: NOP 

 

Halt and enter wait state 

HLT          none The CPU finishes executing the current instruction and halts 

any further execution. An interrupt or reset is necessary to  exit 

from the halt state. 

Example: HLT 

 

Disable interrupts 

DI none The interrupt enable flip-flop is reset and all the interrupts 

except the TRAP are disabled. No flags are affected. 

Example: DI 

 

Enable interrupts 

EI none The interrupt enable flip-flop is set and all interrupts are 

enabled. No flags are affected. After a system reset or the 

acknowledgement of an interrupt, the interrupt enable flip- 

flop is reset, thus disabling the interrupts. This instruction is 

necessary to reenable the interrupts (except TRAP). 

Example: EI 
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Read interrupt mask 

RIM          none This is a multipurpose instruction used to read the status of interrupts 

7.5, 6.5, 5.5 and read serial data input bit. The instruction loads 

eight bits in the accumulator with the following interpretations. 

Example:  RIM 
 
 

 
Set interrupt mask 

SIM none This is a multipurpose instruction and used to implement the 8085 

interrupts 7.5, 6.5, 5.5, and serial data output. The instruction 

interprets the accumulator contents as follows. 

Example:  SIM 
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Chapter 5 

 

Memories and I/O interfacing 

The programs and data that are executed by the microprocessor have to be stored in 

ROM/EPROM and RAM, which are basically semiconductor memory chips. The programs 

and data that are stored in ROM/EPROM are not erased even when power supply to the chip 

is removed. Hence, they are called non-volatile memory. They can be used to store permanent 

programs. 

In a RAM, stored programs and data are erased when the power supply to the chip is 

removed. Hence, RAM is called volatile memory. RAM can be used to store programs and 

data that include, programs written during software development for a microprocessor based 

system, program written when one is learning assembly language programming and data 

enter while testing these programs. 

Input and output devices, which are interfaced with 8085, are essential in any microprocessor 

based system. They can be interfaced using two schemes: I/O mapped I/O and 

memory-mapped I/O. In the I/O mapped I/O scheme, the I/O devices are treated differently 

from memory. In the memory-mapped I/O scheme, each I/O device is assumed to be a 

memory location. 

Interfacing Memory Chips With 8085 
 

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of memory 

locations can be interfaced with it. The memory address space of the 8085 takes values from 

0000H to FFFFH. 
     

The 8085 initiates set of signals such as IO/M, RD and WR when it wants to read from and 

   write into memory. Similarly, each memory chip has signals such as CE or CS (chip enable 
   

or chip select), OE or RD (output enable or read) and WE or WR (write enable or write) 

associated with it. 

Generation of Control Signals for Memory: 
 

When the 8085 wants to read from and write into memory, it activates IO/M, RD and WR 

   signals as shown in Table 8. 
 

Table 8 Status of IO/M , RD and WR signals during memory read and write operations 
 

 
 

IO/M 
 

 

RD 
 

 

WR Operation 

0 0 1 8085 reads data from memory 

0 1 0 8085 writes data into memory 
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Using IO/M , RD and WR signals,  two  control  signals  MEMR (memory  read)  and 

MEMW (memory write) are generated. Fig. shows the circuit used to generate these signals. 

 
 

 

Fig. Circuit used to generate MEMR and MEMW signals 
 

 

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such that the address 

range allocated to the chip is 0000H – 1FFFH. 

Specification of IC 2764: 
 

 8 KB (8 x 210 byte) EPROM chip 

 13 address lines (213 bytes = 8 KB) 

Interfacing: 

 13 address lines of IC are connected to the corresponding address lines of 8085. 

 Remaining address lines of 8085 are connected to address decoder formed using logic 

gates, the output of which is connected to the CE pin of IC. 

 Address range allocated to the chip is shown in Table 9. 

 Chip is enabled whenever the 8085 places an address allocated to EPROM chip in the 

address bus. This is shown in Fig.. 
 

Interfacing IC 2764 with the 8085 
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 Address allocated to IC 2764 

 
 

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder such that the 

starting address assigned to the chip is 4000H. 

Specification of IC 6264: 
 

 8K x 8 RAM 

 8 KB = 213 bytes 

 13 address lines 

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the 

address 4000H to 5FFFH are written in binary form, the values in the lines A15, A14, A13 are 

0, 1 and 0 respectively. The NAND gate is designed such that when the lines A15 and A13 

carry 0 and A14 carries 1, the output of the NAND gate is 0. The NAND gate output is 

in turn connected to the CE1 pin of the RAM chip. A NAND output of 0 selects the RAM chip 

for read or write operation, since CE2 is already 1 because of its connection to +5V. Fig.  

shows the interfacing of IC 6264 with the 8085. 
 

Interfacing 6264 IC with the 8085 
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Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the starting 

addresses assigned to them are 8000H and 9000H, respectively.  

 

Specification of IC 6116: 

 

 2 K x 8 RAM 

 2 KB = 211 bytes 

 11 address lines 

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1 is and 

chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address range of the two 

chips. 
 

 Address range for IC 6116 
 

 

Interfacing: 
 

 Fig.  shows the interfacing. 

 A0 – A10 lines of 8085 are connected to 11 address lines of the RAM chips. 

 Three address lines of 8085 having specific value for a particular RAM are connected 

to the three select inputs (C, B and A) of 74LS138 decoder. 

 Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and A13=0, 

A12=1 and A11=0 for the address assigned to RAM 2. 

 Remaining lines of 8085 which are constant for the address range assigned to the two 

RAM are connected to the enable inputs of decoder. 

 When 8085 places any address between 8000H and 87FFH in the address bus, the 

select inputs C, B and A of the decoder are all 0. The Y0 output of the decoder is also 
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0, selecting RAM 1. 

 When 8085 places any address between 9000H and 97FFH in the address bus, the 

select inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of the decoder is 

also 0, selecting RAM 2. 

 
 

Peripheral Mapped I/O Interfacing 

 

In this method, the I/O devices are treated differently from memory chips. The control signals 

I/O read ( I͞͞͞͞ O͞͞ R͞͞͞͞  ) and I/O write ( I͞͞ O͞͞ W͞͞  ), which are derived from the IO/M͞͞  , ͞͞R͞͞ D͞͞  and W͞͞ R͞͞  signals 

of the 8085, are used to activate input and output devices, respectively. Generation of these 

control signals is shown in Fig. and Table shows the status of IO/M͞͞  , ͞͞R͞͞ D͞͞  and W͞͞ R͞͞  signals 

during I/O read and I/O write operation. 

 

 
 

 

Fig.  Generation of IOR and IOW signals 
 

IN instruction is used to access input device and OUT instruction is used to access output 

device. Each I/O device is identified by a unique 8-bit address assigned to it. Since the control 

signals used to access input and output devices are different, and all I/O device use 8-bit 

address, a maximum of 256 (28) input devices and 256 output devices can be interfaced with 

8085. 
 

Status of IOR and IOW signals in 8085. 
 

 
 

IO/M 
 

 

RD 
 

 

WR 
 

 

IOR 
 

 

IOW Operation 

1 0 1 0 1 I/O read operation 

1 1 0 1 0 I/O write operation 

0 X X 1 1 Memory read or write operation 

 

 

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to the DIP 

switch if F0H. 

IN instruction is used to get data from DIP switch and store it in accumulator. Steps involved 



47  

in the execution of this instruction are: 

i. Address F0H is placed in the lines A0 – A7 and a copy of it in lines A8 – A15. 

ii. The IOR signal is activated ( IOR = 0), which makes the selected input device to place 

its data in the data bus. 

iii. The data in the data bus is read and store in the accumulator. 

 

A7 A6 A5 A4 A3 A2 A1 A0  

1 1 1 1 0 0 0 0 = F0H 

 

A0 – A7 lines are connected to a NAND gate decoder such that the output of NAND gate is 

0. The output of NAND gate is ORed with the IOR signal and the output of OR gate is 

connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from the DIP switch  

is  placed  on  the  data  bus  of  the  8085.  The 8085 read data and store in the 

accumulator. Thus data from DIP switch is transferred to the accumulator. 

 

Memory Mapped I/O Interfacing 
 

In memory-mapped I/O, each input or output device is treated as if it is a memory location.  

The MEMR and MEMW control signals are used to activate the devices. Each input or output 

device is identified by unique 16-bit address, similar to 16-bit address assigned to 

memory location. All memory related instruction like LDA 2000H, LDAX B, MOV A, M 

can be used. Since the I/O devices use some of the memory address space of 8085, the maximum memory 

capacity is lesser than 64 KB in this method. 

Ex: Interface an 8-bit DIP switch with the 8085 using logic gates such that the address 

assigned to it is F0F0H. 

Since a 16-bit address has to be assigned to a DIP switch, the memory-mapped I/O technique 

must be used. Using LDA F0F0H instruction, the data from the 8-bit DIP switch can be 

transferred to the accumulator. The steps involved are: 

i. The address F0F0H is placed in the address bus A0 – A15. 

ii. The MEMR signal is made low for some time. 

iii. The data in the data bus is read and stored in the accumulator. 

Fig.  shows the interfacing diagram. 
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Fig. Interfacing 8-bit DIP switch with 8085 

 

When 8085 executes the instruction LDA F0F0H, it places the address F0F0H in the address 

lines A0 – A15 as: 
 

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 = F0F0H 
 

 

The address lines are connected to AND gates. The output of these gates along with MEMR 

signal are connected to a NAND gate, so that when the address F0F0H is placed in the address 

bus and MEMR = 0 its output  becomes 0, thereby enabling the buffer 74LS244.  The data 

from the DIP switch is placed in the 8085 data bus. The 8085 reads the data from 

the data bus and stores it in the accumulator. 
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Mode of Transfer: 

The binary information that is received from an external device is usually stored in the 

memory unit. The information that is transferred from the CPU to the external device is 

originated from the memory unit. CPU merely processes the information but the source 

and target is always the memory unit. Data transfer between CPU and the I/O devices 

may be done in different modes. 

Data transfer to and from the peripherals may be done in any of the three possible ways 

1. Programmed I/O. 

2. Interrupt- initiated I/O. 

3. Direct Memory Access ( DMA). 

 

Now let’s discuss each mode one by one. 

1. Programmed I/O: It is due to the result of the I/O instructions that are written 

in the computer program. Each data item transfer is initiated by an instruction in 

the program. Usually the transfer is from a CPU register and memory. In this 

case it requires constant monitoring by the CPU of the peripheral devices. 

Example of Programmed I/O: In this case, the I/O device does not have direct 

access to the memory unit. A transfer from I/O device to memory requires the 

execution of several instructions by the CPU, including an input instruction to 

transfer the data from device to the CPU and store instruction to transfer the data 

from CPU to memory. In programmed I/O, the CPU stays in the program loop 

until the I/O unit indicates that it is ready for data transfer. This is a time 

consuming process since it needlessly keeps the CPU busy. This situation can be 

avoided by using an interrupt facility. This is discussed below. 

 

2. Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy 

unnecessarily. This situation can very well be avoided by using an interrupt 

driven method for data transfer. By using interrupt facility and special commands 

to inform the interface to issue an interrupt request signal whenever data is 

available from any device. In the meantime the CPU can proceed for any other 

program execution. The interface meanwhile keeps monitoring the device. 

Whenever it is determined that the device is ready for data transfer it initiates an 

interrupt request signal to the computer. Upon detection of an external interrupt 

signal the CPU stops momentarily the task that it was already performing, 

branches to the service program to process the I/O transfer, and then return to the 

task it was originally performing. 

 

3. Direct Memory Access: The data transfer between a fast storage media such as 

magnetic disk and memory unit is limited by the speed of the CPU. Thus we can 

allow the peripherals directly communicate with each other using the memory 

buses, removing the intervention of the CPU. This type of data transfer technique 

is known as DMA or direct memory access. During DMA the CPU is idle and it 
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has no control over the memory buses. The DMA controller takes over the buses 

to manage the transfer directly between the I/O devices and the memory unit. 

 
 

Bus Request: It is used by the DMA controller to request the CPU to relinquish the 

control of the buses. 

Bus Grant: It is activated by the CPU to Inform the external DMA controller that the 

buses are in high impedance state and the requesting DMA can take control of the 

buses. Once the DMA has taken the control of the buses it transfers the data. This 

transfer can take place in many ways. 

Example it can transfer using 

Bus Transfer: In which a block sequence consisting of memory words is transferred 

in a continuous burst where the DMA controller is the master of the memory buses. 

This mode is needed for fast devices like magnetic disks. 

Cyclic Stealing: In this DMA controller transfers one word at a time after which it 

must return the control of the buses to the CPU. The CPU merely delays its operation 

for one memory cycle to allow the direct memory I/O transfer to “steal” one memory 

cycle. 
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Chapter 6 

 

Interrupt 

 

In system programming, an interrupt is a signal to the processor emitted by hardware or 

software indicating an event that needs immediate attention. An interrupt alerts the 

processor to a high-priority condition requiring the interruption of the current code the 

processor is executing. The processor responds by suspending its current activities, 

saving its state, and executing a function called an interrupt handler (or an interrupt 

service routine, ISR) to deal with the event. This interruption is temporary, and, after the 

interrupt handler finishes, the processor resumes normal activities.  

 

There are two types of interrupts: hardware interrupts and software interrupts. 

Hardware interrupts are used by devices to communicate that they require attention 

from the operating system. Internally, hardware interrupts are implemented using 

electronic alerting signals that are sent to the processor from an external device, which is 

either a part of the computer itself, such as a disk controller, or an external peripheral. 

For example, pressing a key on the keyboard or moving the mouse triggers hardware 

interrupts that cause the processor to read the keystroke or mouse position. Unlike the 

software type (described below), hardware interrupts are asynchronous and can occur in 

the middle of instruction execution, requiring additional care in programming. The act 

of initiating a hardware interrupt is referred to as an interrupt request (IRQ). 

Software interrupt is caused either by an exceptional condition in the processor itself, 

or a special instruction in the instruction set which causes an interrupt when it is 

executed. The former is often called a trap or exception and is used for errors or events 

occurring during program executions that are exceptional enough that they cannot be 

handled within the program itself. For example, a divide-by-zero exception will be 

thrown if the processor's arithmetic logic unit is commanded to divide a number by zero 

as this instruction is an error and impossible. The operating system will catch this 

exception, and can choose to abort the instruction. Software interrupt instructions can 

function similarly to subroutine calls and are used for a variety of purposes, such as to 

request services from device drivers, like interrupts sent to and from a disk controller to 

request reading or writing of data to and from the disk. 

Each interrupt has its own interrupt handler. The number of hardware interrupts is 

limited by the number of interrupt request (IRQ) lines to the processor, but there may be 

hundreds of different software interrupts. Interrupts are a commonly used technique for 

computer multitasking, especially in real-time computing. Such a system is said to be 

interrupt-driven.[3] 

Interrupts are similar to signals, the difference being that signals are used for IPC, 

mediated by the kernel (possibly via system calls) and handled by processes, while 

interrupts are mediated by the processor and handled by the kernel. The kernel may pass 

an interrupt as a signal to the process that caused it (typical examples are SIGSEGV, 

SIGBUS, SIGILL and SIGFPE). 

 

https://en.wikipedia.org/wiki/System_programming
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Function_(programming)
https://en.wikipedia.org/wiki/Interrupt_handler
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Disk_controller
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Asynchronous_communication
https://en.wikipedia.org/wiki/Interrupt_request
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Trap_(computing)
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Subroutine_call
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Disk_controller
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Interrupt#cite_note-3
https://en.wikipedia.org/wiki/Signal_(IPC)
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/SIGSEGV
https://en.wikipedia.org/wiki/SIGBUS
https://en.wikipedia.org/wiki/SIGILL
https://en.wikipedia.org/wiki/SIGFPE
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Interrupt 

Interrupt is the method of creating a temporary halt during program execution and 

allows peripheral devices to access the microprocessor. The microprocessor responds 

to that interrupt with an ISR (Interrupt Service Routine), which is a short program to 

instruct the microprocessor on how to handle the interrupt. 

The following image shows the types of interrupts we have in a 8086 microprocessor 

− 

 
 Interrupt 

 

Hardware Interrupts 

Hardware interrupt is caused by any peripheral device by sending a signal through a 

specified pin to the microprocessor. 

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-mask 

able interrupt and INTR is a mask-able interrupt having lower priority. One more 

interrupt pin associated is INTA called interrupt acknowledge. 

 

NMI: It is a single non-mask-able interrupt pin (NMI) having higher priority than the 

mask-able interrupt request pin (INTR) and it is of type 2 interrupt. 

When this interrupt is activated, these actions take place − 

 Completes the current instruction that is in progress. 

 Pushes the Flag register values on to the stack. 

 Pushes the CS (code segment) value and IP (instruction pointer) value of the 

return address on to the stack. 

 IP is loaded from the contents of the word location 00008H. 

 CS is loaded from the contents of the next word location 0000AH. 

 Interrupt flag and trap flag are reset to 0. 
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INTR: The INTR is a mask-able interrupt because the microprocessor will be 

interrupted only if interrupts are enabled using set interrupt flag instruction. It should 

not be enabled using clear interrupt Flag instruction. 

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI is 

disabled, then the microprocessor first completes the current execution and sends ‘0’ 

on INTA pin twice. The first ‘0’ means INTA informs the external device to get ready 

and during the second ‘0’ the microprocessor receives the 8 bit, say X, from the 

programmable interrupt controller. 

These actions are taken by the microprocessor − 

 First completes the current instruction. 

 Activates INTA output and receives the interrupt type, say X. 

 Flag register value; CS value of the return address and IP value of the return 

address are pushed on to the stack. 

 IP value is loaded from the contents of word location X × 4 

 CS is loaded from the contents of the next word location. 

 Interrupt flag and trap flag is reset to 0 

 

Software Interrupts 

Some instructions are inserted at the desired position into the program to create 

interrupts. These interrupt instructions can be used to test the working of various 

interrupt handlers. It includes – 

 

INT- Interrupt instruction with type number 

It is 2-byte instruction. First byte provides the op-code and the second byte provides 

the interrupt type number. There are 256 interrupt types under this group. 

Its execution includes the following steps − 

 Flag register value is pushed on to the stack. 

 CS value of the return address and IP value of the return address are pushed on to 

the stack. 

 IP is loaded from the contents of the word location ‘type number’× 4. 

 CS is loaded from the contents of the next word location. 

 Interrupt Flag and Trap Flag are reset to 0 

 

The starting address for type0 interrupt is 000000H, for type1 interrupt is 00004H 

similarly for type2 is 00008H and ……so on. The first five pointers are dedicated 

interrupt pointers. i.e. - 

 TYPE 0 interrupt represents division by zero situation. 

 TYPE 1 interrupt represents single-step execution during the debugging of a 

program. 

 TYPE 2 interrupt represents non-mask-able NMI interrupt. 

 TYPE 3 interrupt represents break-point interrupt. 

 TYPE 4 interrupt represents overflow interrupt. 
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The interrupts from Type 5 to Type 31 are reserved for other advanced 

microprocessors, and interrupts from 32 to Type 255 are available for hardware and 

software interrupts. 

INT 3-Break Point Interrupt Instruction 

It is a 1-byte instruction having op-code is CCH. These instructions are inserted into 

the program so that when the processor reaches there, then it stops the normal 

execution of program and follows the break-point procedure. 

Its execution includes the following steps − 

 Flag register value is pushed on to the stack. 

 CS value of the return address and IP value of the return address are pushed on to 

the stack. 

 IP is loaded from the contents of the word location 3×4 = 0000CH 

 CS is loaded from the contents of the next word location. 

 Interrupt Flag and Trap Flag are reset to 0. 

 

INTO - Interrupt on overflow instruction 

It is a 1-byte instruction and their mnemonic INTO. The op-code for this instruction 

is CEH. As the name suggests it is a conditional interrupt instruction, i.e. it is active 

only when the overflow flag is set to 1 and branches to the interrupt handler whose 

interrupt type number is 4. If the overflow flag is reset then, the execution continues 

to the next instruction. 

Its execution includes the following steps − 

 Flag register values are pushed on to the stack. 

 CS value of the return address and IP value of the return address are pushed on to 

the stack. 

 IP is loaded from the contents of word location 4×4 = 00010H 

 CS is loaded from the contents of the next word location. 

 Interrupt flag and Trap flag are reset to 0 

 

Non-Mask-Able Interrupts 

A non-mask-able interrupt (NMI) is a type of hardware interrupt (or signal to the 

processor) that prioritizes a certain thread or process. Unlike other types of interrupts, 

the non-mask-able interrupt cannot be ignored through the use of interrupt masking 

techniques. 

 

Mask-Able interrupt 

An Interrupt that can be disabled or ignored by the instructions of CPU is called as 

mask-able Interrupt. 

Eg: RST6.5, RST7.5, RST5.5 OF 8085 is mask-able Interrupts. 
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Chapter 7 

 

Data transfer Techniques 

Programmed input/output (PIO) is a method of transferring data between 

the CPU and a peripheral, such as a network adapter or an ATA storage device. 

For programmed I/O, the software that is running on the CPU uses instructions to 

perform data transfers to or from an I/O device. This is in contrast to Direct Memory 

Access (DMA) transfers. The term Programmed I/O can refer to either MMIO or 

PMIO. Port-mapped I/O (PMIO) refers to a special address space outside of normal 

memory that is accessed with instructions such as IN and OUT. Memory-mapped 

I/O[1] (MMIO) refers to I/O devices being allocated addresses inside the normal Von 

Neumann address space that is primarily used for program and data. Such I/O is done 

using instructions such as LOAD and STORE. PMIO was very useful for early 

microprocessors with small address spaces, since the valuable resource was not 

consumed by the I/O devices. 

 

The best known example of a PC device that uses programmed I/O is 

the ATA interface; however, this interface can also be operated in any of 

several DMA modes. Many older devices in a PC also use PIO, including legacy serial 

ports, legacy parallel ports when not in ECP mode, the PS/2 keyboard and mouse ports, 

legacy MIDI and joystick ports, the interval timer, and older network interfaces. 

 

Synchronous data transmission 

Synchronous transmission is transmission of signals in a fixed interval based on a 

predefined clocking signal and is meant for constant and reliable transmission of 

time-sensitive data such as VoIP and audio/video streaming. 

This method of transmission is used when large amounts of data need to be transferred 

quickly since data is transferred in large blocks instead of individual characters. The 

data blocks are spaced and grouped in regular intervals and preceded by synchronous 

characters that a remote device decode and use to synchronize the connection between 

the end points. 

After synchronization is complete, the transmission can begin. 

Asynchronous data transfer 

The transmission of asynchronous data is not prompted by a clock signal when sending 

the data to the receiver, unlike in synchronous methods, where sending data is 

measured against a time reference. Compared to synchronous transmission, 

asynchronous communication has a few advantages: 

 It is more flexible and devices can exchange information at their own pace. 

Individual data characters can complete themselves so that even if one packet is 

corrupted, its predecessors and successors will not be affected. 

 It does not require complex processes by the receiving device. This means that 

an inconsistency in the transmission of data does not result in a big crisis, since 

the device can keep up with the data stream. This also makes asynchronous 
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transfers suitable for applications where character data is generated in an 

irregular manner. 

 

There are also some disadvantages of using asynchronous data for transmission: 

 The success of these transmissions depends on the start bits and their 

recognition. This can be easily susceptible to line interference, causing these 

bits to be corrupted or distorted. 

 A large portion of the transmitted data is used for control and identification bits 

for headers and thus carries no useful information related to the transmitted 

data. This invariably means that more data packets need to be sent. 

Interrupt driven I/O 

Interrupt driven I/O is an alternative scheme dealing with I/O. Interrupt I/O is a way of 

controlling input/output activity whereby a peripheral or terminal that needs to make 

or receive a data transfer sends a signal. This will cause a program interrupt to be set. 

At a time appropriate to the priority level of the I/O interrupt. Relative to the total 

interrupt system, the processors enter an interrupt service routine. The function of the 

routine will depend upon the system of interrupt levels and priorities that is 

implemented in the processor. The interrupt technique requires more complex 

hardware and software, but makes far more efficient use of the computer’s time and 

capacities 

For input, the device interrupts the CPU when new data has arrived and is ready to be 

retrieved by the system processor. The actual actions to perform depend on whether the 

device uses I/O ports or memory mapping. 

For output, the device delivers an interrupt either when it is ready to accept new data 

or to acknowledge a successful data transfer. Memory-mapped and DMA-capable 

devices usually generate interrupts to tell the system they are done with the buffer. 

Here the CPU works on its given tasks continuously. When an input is available, such 

as when someone types a key on the keyboard, then the CPU is interrupted from its 

work to take care of the input data. The CPU can work continuously on a task without 

checking the input devices, allowing the devices themselves to interrupt it as 

necessary. 

Direct Memory Access 

Direct memory access (DMA) is a feature of computer systems that allows certain 

hardware subsystems to access main system memory (Random-access memory), 

independent of the central processing unit (CPU). 

Without DMA, when the CPU is using programmed input/output, it is typically fully 

occupied for the entire duration of the read or write operation, and is thus unavailable 

to perform other work. With DMA, the CPU first initiates the transfer, then it does 

other operations while the transfer is in progress, and it finally receives 

an interrupt from the DMA controller when the operation is done. This feature is useful 

at any time that the CPU cannot keep up with the rate of data transfer, or when the 

CPU needs to perform work while waiting for a relatively slow I/O data transfer. Many 

hardware systems use DMA, including disk drivecontrollers, graphics cards, network 

cards and sound cards. DMA is also used for intra-chip data transfer in multi-core 
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processors. Computers that have DMA channels can transfer data to and from devices 

with much less CPU overhead than computers without DMA channels. Similarly, a 

processing element inside a mufti-core processor can transfer data to and from its local 

memory without occupying its processor time, allowing computation and data transfer 

to proceed in parallel. 

DMA can also be used for "memory to memory" copying or moving of data within 

memory. DMA can offload expensive memory operations, such as large copies 

or scatter-gather operations, from the CPU to a dedicated DMA engine. An 

implementation example is the I/O Acceleration Technology. 

 

Serial I/O 

Serial input/output (SIO) A method of communicating data between devices, 

typically a computer and its peripherals, the individual data bits being sent 

sequentially. Serial communication may be asynchronous, where the data characters 

include start and stop bits to delimit the data, or synchronous, where such additional 

bits are omitted and the delimiting of the data depends purely on timing. 

Asynchronous serial communication is more flexible whereas synchronous serial 

communication makes better use of the available bandwidth. Asynchronous methods 

are generally used with dial-up modems or for general connection of simple serial 

peripherals. Synchronous methods are usually to be found where leased lines or 

proprietary interfaces are used. 

 

Until recently SIO was a relatively slow mode, but advances in silicon technology 

means that very fast SIO (hundreds of megabits per second) now make SIO a very 

cost-effective alternative to parallel interfaces. See USB, Firewire, serial IDE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Vectored_I/O
https://en.wikipedia.org/wiki/I/O_Acceleration_Technology
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/leased-line
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/usb#1O11USB
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/firewire#1O11firewire
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/serial-ide
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Chapter 8 

Peripheral devices 

 

8255 Pin Diagram 

Let us first take a look at the pin diagram of Intel 8255A − 

 
 pin diagram 8255 A 

Now let us discuss the functional description of the pins in 8255A. 

Data Bus Buffer 

It is a tri-state 8-bit buffer, which is used to interface the microprocessor to the system 

data bus. Data is transmitted or received by the buffer as per the instructions by the 

CPU. Control words and status information is also transferred using this bus. 

Read/Write Control Logic 

This block is responsible for controlling the internal/external transfer of 

data/control/status word. It accepts the input from the CPU address and control buses, 

and in turn issues command to both the control groups. 

CS 

It stands for Chip Select. A LOW on this input selects the chip and enables the 

communication between the 8255A and the CPU. It is connected to the decoded 

address, and A0 & A1 are connected to the microprocessor address lines. 

WR 

It stands for write. This control signal enables the write operation. When this signal 

goes low, the microprocessor writes into a selected I/O port or control register. 

RESET 

This is an active high signal. It clears the control register and sets all ports in the input 

mode. 

RD 

It stands for Read. This control signal enables the Read operation. When the signal is 

low, the microprocessor reads the data from the selected I/O port of the 8255. 

 

8257 

Here is a list of some of the prominent features of 8257 − 

 It has four channels which can be used over four I/O devices. 
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 Each channel has 16-bit address and 14-bit counter. 

 Each channel can transfer data up to 64kb. 

 Each channel can be programmed independently. 

 Each channel can perform read transfer, write transfer and verify transfer 

operations. 

 It generates MARK signal to the peripheral device that 128 bytes have been 

transferred. 

 It requires a single phase clock. 

 Its frequency ranges from 250Hz to 3MHz. 

 It operates in 2 modes, i.e., Master mode and Slave mode. 

 

8257 Architecture 

The following image shows the architecture of 8257 − 

 
 Pin diagram of 8257 

 

 

 

 



60  

8257 Pin Description 

The following image shows the pin diagram of a 8257 DMA controller − 

 
 8257 pin description 

DRQ0−DRQ3 

These are the four individual channel DMA request inputs, which are used by the 

peripheral devices for using DMA services. When the fixed priority mode is selected, 

then DRQ0 has the highest priority and DRQ3 has the lowest priority among them. 

DACKo − DACK3 

These are the active-low DMA acknowledge lines, which updates the requesting 

peripheral about the status of their request by the CPU. These lines can also act as 

strobe lines for the requesting devices. 

Do − D7 

These are bidirectional, data lines which are used to interface the system bus with the 

internal data bus of DMA controller. In the Slave mode, it carries command words to 

8257 and status word from 8257. In the master mode, these lines are used to send 

higher byte of the generated address to the latch. This address is further latched using 

ADSTB signal. 

IOR 

It is an active-low bidirectional tri-state input line, which is used by the CPU to read 

internal registers of 8257 in the Slave mode. In the master mode, it is used to read data 

from the peripheral devices during a memory write cycle. 

IOW 

It is an active low bi-direction tri-state line, which is used to load the contents of the 

data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address 

register or terminal count register. In the master mode, it is used to load the data to the 

peripheral devices during DMA memory read cycle. 

CLK 

It is a clock frequency signal which is required for the internal operation of 8257. 

RESET 

This signal is used to RESET the DMA controller by disabling all the DMA channels. 
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Ao - A3 

These are the four least significant address lines. In the slave mode, they act as an 

input, which selects one of the registers to be read or written. In the master mode, they 

are the four least significant memory address output lines generated by 8257. 

CS 

It is an active-low chip select line. In the Slave mode, it enables the read/write 

operations to/from 8257. In the master mode, it disables the read/write operations 

to/from 8257. 

A4 - A7 

These are the higher nibble of the lower byte address generated by DMA in the master 

mode. 

READY 

It is an active-high asynchronous input signal, which makes DMA ready by inserting 

wait states. 

HRQ 

This signal is used to receive the hold request signal from the output device. In the 

slave mode, it is connected with a DRQ input line 8257. In Master mode, it is 

connected with HOLD input of the CPU. 

HLDA 

It is the hold acknowledgement signal which indicates the DMA controller that the 

bus has been granted to the requesting peripheral by the CPU when it is set to 1. 

MEMR 

It is the low memory read signal, which is used to read the data from the addressed 

memory locations during DMA read cycles. 

MEMW 

It is the active-low three state signal which is used to write the data to the addressed 

memory location during DMA write operation. 

ADST 

This signal is used to convert the higher byte of the memory address generated by the 

DMA controller into the latches. 

AEN 

This signal is used to disable the address bus/data bus. 

TC 

It stands for ‘Terminal Count’, which indicates the present DMA cycle to the present 

peripheral devices. 

MARK 

The mark will be activated after each 128 cycles or integral multiples of it from the 

beginning. It indicates the current DMA cycle is the 128th cycle since the previous 

MARK output to the selected peripheral device. 

V cc 

It is the power signal which is required for the operation of the circuit. 
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8279 

8279 programmable keyboard/display controller is designed by Intel that interfaces a 

keyboard with the CPU. The keyboard first scans the keyboard and identifies if any 

key has been pressed. It then sends their relative response of the pressed key to the 

CPU and vice-a-versa. 

How Many Ways the Keyboard is Interfaced with the CPU? 

The Keyboard can be interfaced either in the interrupt or the polled mode. In 

the Interrupt mode, the processor is requested service only if any key is pressed, 

otherwise the CPU will continue with its main task. 

In the Polled mode, the CPU periodically reads an internal flag of 8279 to check 

whether any key is pressed or not with key pressure. 

 

How Does 8279 Keyboard Work? 

The keyboard consists of maximum 64 keys, which are interfaced with the CPU by 

using the key-codes. These key-codes are de-bounced and stored in an 8-byte 

FIFORAM, which can be accessed by the CPU. If more than 8 characters are entered 

in the FIFO, then it means more than eight keys are pressed at a time. This is when the 

overrun status is set. 

If a FIFO contains a valid key entry, then the CPU is interrupted in an interrupt mode 

else the CPU checks the status in polling to read the entry. Once the CPU reads a key 

entry, then FIFO is updated, and the key entry is pushed out of the FIFO to generate 

space for new entries. 

 

Architecture and Description 

 
 Block diagram of 8279 
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I/O Control and Data Buffer 

This unit controls the flow of data through the microprocessor. It is enabled only 

when D is low. Its data buffer interfaces the external bus of the system with the 

internal bus of the microprocessor. The pins A0, RD, and WR are used for command, 

status or data read/write operations. 

 

Control and Timing Register and Timing Control 

This unit contains registers to store the keyboard, display modes, and other operations 

as programmed by the CPU. The timing and control unit handles the timings for the 

operation of the circuit. 

 

Scan Counter 

It has two modes i.e. Encoded mode and Decoded mode. In the encoded mode, the 

counter provides the binary count that is to be externally decoded to provide the scan 

lines for the keyboard and display. 

In the decoded scan mode, the counter internally decodes the least significant 2 bits 

and provides a decoded 1 out of 4 scan on SL0-SL3. 

 

Return Buffers, Keyboard Debounce, and Control 

This unit first scans the key closure row-wise, if found then the keyboard debounce 

unit debounces the key entry. In case, the same key is detected, then the code of that 

key is directly transferred to the sensor RAM along with SHIFT & CONTROL key 

status. 

 

FIFO/Sensor RAM and Status Logic 

This unit acts as 8-byte first-in-first-out (FIFO) RAM where the key code of every 

pressed key is entered into the RAM as per their sequence. The status logic generates 

an interrupt request after each FIFO read operation till the FIFO gets empty. 

In the scanned sensor matrix mode, this unit acts as sensor RAM where its each row is 

loaded with the status of their corresponding row of sensors into the matrix. When the 

sensor changes its state, the IRQ line changes to high and interrupts the CPU. 

 

Display Address Registers and Display RAM 

This unit consists of display address registers which holds the addresses of the word 

currently read/written by the CPU to/from the display RAM. 

 

8279 − Pin Description 

The following figure shows the pin diagram of 8279 − 

 

Data Bus Lines, DB0 - DB7 

These are 8 bidirectional data bus lines used to transfer the data to/from the CPU. 

CLK 

The clock input is used to generate internal timings required by the microprocessor. 
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RESET 

As the name suggests this pin is used to reset the microprocessor. 

CS Chip Select 

When this pin is set to low, it allows read/write operations, else this pin should be set 

to high. 

A0 

This pin indicates the transfer of command/status information. When it is low, it 

indicates the transfer of data. 

RD, WR 

This Read/Write pin enables the data buffer to send/receive data over the data bus. 

 

IRQ 

This interrupt output line goes high when there is data in the FIFO sensor RAM. The 

interrupt line goes low with each FIFO RAM read operation. However, if the FIFO 

RAM further contains any key-code entry to be read by the CPU, this pin again goes 

high to generate an interrupt to the CPU. 

Vss, V cc 

These are the ground and power supply lines of the microprocessor. 

SL0 − SL3 

These are the scan lines used to scan the keyboard matrix and display the digits. These 

lines can be programmed as encoded or decoded, using the mode control register. 

RL0 − RL7 

These are the Return Lines which are connected to one terminal of keys, while the 

other terminal of the keys is connected to the decoded scan lines. These lines are set to 

0 when any key is pressed. 

 

SHIFT 

The Shift input line status is stored along with every key code in FIFO in the scanned 

keyboard mode. Till it is pulled low with a key closure, it is pulled up internally to 

keep it high 

 

CNTL/STB - CONTROL/STROBED I/P Mode 

In the keyboard mode, this line is used as a control input and stored in FIFO on a key 

closure. The line is a strobe line that enters the data into FIFO RAM, in the strobed 

input mode. It has an internal pull up. The line is pulled down with a key closure. 

BD 

It stands for blank display. It is used to blank the display during digit switching. 

 

OUTA0 – OUTA3 and OUTB0 – OUTB3 

These are the output ports for two 16x4 or one 16x8 internal display refresh registers. 

The data from these lines is synchronized with the scan lines to scan the display and 

the keyboard. 

 

Operational Modes of 8279 
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There are two modes of operation on 8279 − Input Mode and Output Mode. 

 

Input Mode 

This mode deals with the input given by the keyboard and this mode is further classified 

into 3 modes. 

 Scanned Keyboard Mode − In this mode, the key matrix can be interfaced using 

either encoded or decoded scans. In the encoded scan, an 8×8 keyboard or in the 

decoded scan, a 4×8 keyboard can be interfaced. The code of key pressed with 

SHIFT and CONTROL status is stored into the FIFO RAM. 

 Scanned Sensor Matrix − In this mode, a sensor array can be interfaced with the 

processor using either encoder or decoder scans. In the encoder scan, 8×8 sensor 

matrix or with decoder scan 4×8 sensor matrix can be interfaced. 

 Strobed Input − In this mode, when the control line is set to 0, the data on the 

return lines is stored in the FIFO byte by byte. 

 

Output Mode 

This mode deals with display-related operations. This mode is further classified into 

two output modes. 

 Display Scan − This mode allows 8/16 character multiplexed displays to be 

organized as dual 4-bit/single 8-bit display units. 

 Display Entry − This mode allows the data to be entered for display either from the 

right side/left side. 

 

 

 


	The Microprocessor's Impact on Society
	Address bus:
	Data Bus:
	Control bus:

	Data Transfer Instructions
	Arithmetic Instructions
	Branching Instructions
	Logical Instructions
	Control Instructions
	Chapter 5
	Interfacing Memory Chips With 8085
	Peripheral Mapped I/O Interfacing
	Memory Mapped I/O Interfacing
	Mode of Transfer:
	NMI: It is a single non-mask-able interrupt pin (NMI) having higher priority than the mask-able interrupt request pin (INTR) and it is of type 2 interrupt.
	INTR: The INTR is a mask-able interrupt because the microprocessor will be interrupted only if interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear interrupt Flag instruction.

	Software Interrupts
	INT- Interrupt instruction with type number
	INT 3-Break Point Interrupt Instruction
	INTO - Interrupt on overflow instruction

	Data Bus Buffer
	Read/Write Control Logic
	CS
	WR
	RESET
	RD
	8257 Architecture
	8257 Pin Description
	DRQ0−DRQ3
	DACKo − DACK3
	Do − D7
	IOR
	IOW
	CLK
	RESET
	Ao - A3
	CS
	A4 - A7
	READY
	HRQ
	HLDA
	MEMR
	MEMW
	ADST
	AEN
	TC
	MARK
	V cc
	How Many Ways the Keyboard is Interfaced with the CPU?
	How Does 8279 Keyboard Work?
	Architecture and Description
	I/O Control and Data Buffer
	Control and Timing Register and Timing Control
	Scan Counter
	Return Buffers, Keyboard Debounce, and Control
	FIFO/Sensor RAM and Status Logic
	Display Address Registers and Display RAM
	8279 − Pin Description
	Data Bus Lines, DB0 - DB7
	CLK (1)
	RESET (1)
	CS Chip Select
	A0
	RD, WR
	IRQ
	Vss, V cc
	SL0 − SL3
	RL0 − RL7
	SHIFT
	CNTL/STB - CONTROL/STROBED I/P Mode
	BD
	OUTA0 – OUTA3 and OUTB0 – OUTB3

	Operational Modes of 8279
	Input Mode
	Output Mode



